Enforcement of γδ-lineage commitment by the pre-T-cell receptor in precursors with weak γδ-TCR signals.

نویسندگان

  • Payam Zarin
  • Gladys W Wong
  • Mahmood Mohtashami
  • David L Wiest
  • Juan Carlos Zúñiga-Pflücker
چکیده

Developing thymocytes bifurcate from a bipotent precursor into αβ- or γδ-lineage T cells. Considering this common origin and the fact that the T-cell receptor (TCR) β-, γ-, and δ-chains simultaneously rearrange at the double negative (DN) stage of development, the possibility exists that a given DN cell can express and transmit signals through both the pre-TCR and γδ-TCR. Here, we tested this scenario by defining the differentiation outcomes and criteria for lineage choice when both TCR-β and γδ-TCR are simultaneously expressed in Rag2(-/-) DN cells via retroviral transduction. Our results showed that Rag2(-/-) DN cells expressing both TCRs developed along the γδ-lineage, down-regulated CD24 expression, and up-regulated CD73 expression, showed a γδ-biased gene-expression profile, and produced IFN-γ in response to stimulation. However, in the absence of Inhibitor of DNA-binding 3 expression and strong γδ-TCR ligand, γδ-expressing cells showed a lower propensity to differentiate along the γδ-lineage. Importantly, differentiation along the γδ-lineage was restored by pre-TCR coexpression, which induced greater down-regulation of CD24, higher levels of CD73, Nr4a2, and Rgs1, and recovery of functional competence to produce IFN-γ. These results confirm a requirement for a strong γδ-TCR ligand engagement to promote maturation along the γδ T-cell lineage, whereas additional signals from the pre-TCR can serve to enforce a γδ-lineage choice in the case of weaker γδ-TCR signals. Taken together, these findings further cement the view that the cumulative signal strength sensed by developing DN cells serves to dictate its lineage choice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PTPN2 regulates T cell lineage commitment and αβ versus γδ specification

In the thymus, hematopoietic progenitors commit to the T cell lineage and undergo sequential differentiation to generate diverse T cell subsets, including major histocompatibility complex (MHC)-restricted αβ T cell receptor (TCR) T cells and non-MHC-restricted γδ TCR T cells. The factors controlling precursor commitment and their subsequent maturation and specification into αβ TCR versus γδ TCR...

متن کامل

Differential synergy of Notch and T cell receptor signaling determines αβ versus γδ lineage fate

Thymic precursors expressing the pre-T cell receptor (TCR), the gammadeltaTCR, or the alphabetaTCR can all enter the CD4+ 8+ alphabeta lineage, albeit with different efficacy. Here it is shown that proliferation and differentiation of precursors with the different TCRs into alphabeta lineage cells require Notch signaling at the DN3 stage of thymic development. At the DN4 stage, Notch signaling ...

متن کامل

T cell receptor–instructed αβ versus γδ lineage commitment revealed by single-cell analysis

alphabeta and gammadelta T cell lineages develop in the thymus from a common precursor. It is unclear at which stage of development commitment to these lineages takes place and in which way T cell receptor signaling contributes to the process. Recently, it was demonstrated that strong TCR signals favor gammadelta lineage development, whereas weaker TCR signals promote alphabeta lineage fate. Tw...

متن کامل

Lineage divergence at the first TCR-dependent checkpoint: preferential γδ and impaired αβ T cell development in nonobese diabetic mice.

The first TCR-dependent checkpoint in the thymus determines αβ versus γδ T lineage fate and sets the stage for later T cell differentiation decisions. We had previously shown that early T cells in NOD mice that are unable to rearrange a TCR exhibit a defect in checkpoint enforcement at this stage. To determine if T cell progenitors from wild-type NOD mice also exhibit cell-autonomous defects in...

متن کامل

Specific Notch receptor–ligand interactions control human TCR-αβ/γδ development by inducing differential Notch signal strength

In humans, high Notch activation promotes γδ T cell development, whereas lower levels promote αβ-lineage differentiation. How these different Notch signals are generated has remained unclear. We show that differential Notch receptor-ligand interactions mediate this process. Whereas Delta-like 4 supports both TCR-αβ and -γδ development, Jagged1 induces mainly αβ-lineage differentiation. In contr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 15  شماره 

صفحات  -

تاریخ انتشار 2014